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Notations

• We useˆfor the Fourier transform and ∨ for the inverse.

• S(Rd) means the Schwartz space.

• X ≲ Y means X ≤ CY for some constant C which is not important.

1 Introduction
Given a bounded function m : Rd → C, we define the operator m(D) as follows:

m(D)f := (mf̂)∨, f ∈ S(Rd).

The effect of m(D) is to multiply m to f̂ , so we call it a multiplier. Note that m(D)
is L2 bounded by Plancherel. We are interested in its behavior on other Lp spaces for
1 < p < ∞.

Below we focus on the d = 2 case, but many discussions extend to general d.
A natural choice of m is the characteristic function of certain subsets in R2.

Example. Let m := 1A, A ⊂ R2. We can choose A to be a half plane, a polygon, a
pentagram, or a ball.

It turns out the multipliers associated with half planes, polygons, and pentagrams are not
so different. Using the basic singular integral theory, we can prove:

Theorem 1. Let m be the characteristic function of a half plane, a polygon, or a pentagram.
Then for any 1 < p < ∞, m(D) is an Lp bounded operator.

However, the ball is very different from others. Its curved boundary provides too many
directions which allow for some Kakeya type configuration and give unboundedness.

Theorem 2 (Fefferman [2]). Let m be the characteristic function of a ball. Then for any
p ̸= 2, m(D) is not an Lp bounded operator.
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Our main goal is to present Fefferman’s proof of Theorem 2. By translation and dilation
in the frequency space, it suffices to consider the unit ball. Fix B := {ξ ∈ R2 : |ξ| < 1}
from now on. We can also assume p > 2 by duality. The goal is to construct f such that

∥f∥pp is small, (1)
∥1B(D)f∥pp is large. (2)

We will first explain the main ideas and then sketch the rigorous construction.

2 The Uncertainty Principle
To study 1B(D), we need to understand how the Fourier support of one function determines
its behavior in the physical side.

Let A ⊂ R2 be a bounded set near 0. Assume f has Fourier support inside A. Let
x0, x ∈ R2. We compare f(x) and f(x0):

f(x)− f(x0) =

∫
R2

e2πix·ξf̂(ξ)dξ −
∫
R2

e2πix0·ξf̂(ξ)dξ

=

∫
A

(e2πi(x−x0)·ξ − 1)e2πix0·ξf̂(ξ)dξ.

Intuitively, if x0, x satisfy
|(x− x0) · ξ| ≤

1

100
, ∀ξ ∈ A,

then |f(x)− f(x0)| should be small. This motivates us to define the dual set:

A∗ := {y ∈ R2 : |y · ξ| ≤ c for any ξ ∈ A},

where c is a fixed small constant. (The precise value of c is not important.) The above
discussion suggests

f(x) ≈ f(x0), ∀x ∈ x0 + A∗.

Such intuition is particularly useful when A is convex. For a non-convex set A, let
A0 := A and

A1 :=
⋃

λ∈[0,1]

(
(1− λ)A0 + λA0

)
.

It’s not hard to see |y · ξ| ≤ c holds on the larger region A1:

|y · ξ| ≤ c, ∀ξ ∈ A0 =⇒ |y · ξ| ≤ c, ∀ξ ∈ A1.

Then define A2, A3, · · · recursively. We get that |y · ξ| ≤ c holds on all Aj by induction.
Our construction implies the union

A∞ :=
⋃
j

Aj
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Figure 1: Convex Hull

is the convex hull of A. (Equivalently, A∞ consists of all finite convex combinations of
elements in A.) And the above argument gives:

A∗ = A∗
∞.

Example. See Figure 1. A0 is a small neighborhood of the truncated parabola, and
A∞ = A1 is a much larger region.

When applying the above intuition to a non-convex set A, the conclusion will be the
same if f̂ is supported in a much larger set A∞. In this case, the intuition becomes
inefficient. Thus we only apply it for convex sets. A typical choice of convex sets in R2 is
rectangles. For a rectangle centered at 0, its dual set is essentially the rectangle with the
same center and direction, but reciprocal side length. Denote rectangles in the frequency
space and the physical space by Θ and R respectively.

If f̂ is supported in some Θ not close to 0, we can pick ξ0 ∈ Θ and define g via

ĝ(ξ) = f̂(ξ + ξ0).

Then ĝ is supported in Θ0 := Θ− ξ0 near the origin. Applying our intuition to g gives

f(x) ≈ g(x0)e
2πiξ0x, ∀x ∈ x0 +Θ∗

0.

Moreover, if f̂ is very smooth, integrating by parts several times will give the rapid
decay of |g(x0)| as |x0| increases. We then expect f is negligible outside Θ∗

0.
We summarize the above discussion as follows:

Intuition 1 (The Uncertainty Principle). Assume f̂ is supported in a rectangle Θ with
center ξ0. Then

f(x) ≈
∑
R∥Θ∗

0

cRe
2πiξ0x1R(x),

where R ∥ Θ∗
0 ranges a tiling of R2. Assume additionally that f̂ is very smooth. Then

f(x) ≈ cΘ∗
0
e2πiξ0x1Θ∗

0
(x).
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Figure 2: Wave Packets

3 Wave Packets for the Circle
Recall we want to construct f ∈ S(R2) such that (1) and (2) hold. Since the Fourier
transform is a bijection, we instead consider what f̂ should be like.

An immediate observation is that all interesting actions happen near the boundary
S1 := {ξ : |ξ| = 1}. In fact, let ρ be a smooth version of 1|ξ|<1− 1

100
. We can write

1B = ρ1B + (1− ρ)1B = ρ+ (1− ρ)1B.

Because ρ(D) is just convolution with the smooth function ρ̌, boundedness of 1B(D)
depends on the latter term. This suggests that for our counterexample f̂ , only the part
near boundary matters.

Thus we focus on constructing f̂ supported near the boundary. We want to analyze
how our counterexample behaves under 1B(D) via the uncertainty principle. But the
involved region, a thin annulus near S1, is far from being convex. To settle this, we fix a
small parameter δ > 0 and proceed as follows:

• Partition the annulus of width δ2 into δ × δ2 rectangles (i.e. small convex regions).

• Construct the corresponding part of f̂ associated to each rectangle separately.

• Arrange these parts suitably so that the sum of them gives a counterexample.

See Figure 2. If we put a bump function φ on one δ × δ2 rectangle Θ centered at ξΘ,
then

φ̌(x) ≈ e2πiξΘx1Θ∗
0
.

Here Θ∗
0 is essentially a δ−1 × δ−2 rectangle centered at 0. After multiplying 1B, the

part outside B is eliminated. And we get a less smooth function supported in a smaller
“rectangle”. Thus the norm of its inverse Fourier transform should be constant in a larger
region and decay slower:

(1Bφ)
∨(x) ≈ e2πiξΘx, ∀x ∈ Θ̃∗

0,
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where Θ̃∗
0 is obtained from Θ∗

0 by extending its longer side 20 times (say). Though (1Bφ)
∨

decays slower outside Θ̃∗
0, we will still neglect the outside part for simplicity. (The tail

turns out to be harmless.)
More generally, we can put a modulated bump function on one δ × δ2 rectangle. This

makes Θ∗
0 and Θ̃∗

0 move in the physical space together (and gives some extra constant).
We summarize the above discussion as follows:

Intuition 2 (Effect of the Ball Multiplier). Consider a modulated bump function φ on
one δ × δ2 rectangle Θ centered at ξΘ. The effect of 1B(D) on it can be expressed as:

φ̌(x) ≈ e2πiξΘx1R(x)
1B(D)−−−→ e2πiξΘx1R̃(x),

where R and R̃ are arbitrarily translated Θ∗
0 and Θ̃∗

0. Recall we partition the δ2 annulus
into δ× δ2 rectangles. Let f̂ be the sum of modulated bump functions associated with these
rectangles. The effect of 1B(D) on f can be expressed as:

f(x) ≈
∑
R

e2πiξΘx1R(x)
1B(D)−−−→

∑
R

e2πiξΘx1R̃(x).

Here R ranges a set of δ−1 × δ−2 rectangles with δ-separated directions. In each direction,
we can decide the precise postition of the corresponding R.

4 Creating Peaks via Kakeya Type Configuration
By the above intuition, we should arrange the positions of R’s such that:

∥
∑
R

e2πiξΘx1R∥pp is small, (3)

∥
∑
R

e2πiξΘx1R̃∥
p
p is large. (4)

Recall p > 2. Lp norms for large p is more sensitive to the peaks of a function. Thus
R’s should be disjoint to avoid concentration and R̃’s should be overlapping to create
peaks. Since rectangles are convex, it’s impossible to make the entire (R̃\R)’s intersect
severely. Instead, we pick one side R+ for each R̃ and let R+’s overlap. See Figure 3. By
disjointness, the quantity in (3) is equal to

|
⋃
R

R|.

And the quantity in (4) is larger than∫
⋃

R R+

|
∑
R

e2πiξΘx1R+ |p.
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Figure 3: Overlapping

It would be perfect to have

|
∑
R

e2πiξΘx1R+ | ≈ |
∑
R

1R+ |

on
⋃

R R+. But these L2 orthogonal waves have oscillation and must cancel a lot under
summation. In such situations, we usually expect a square-root cancellation. We should
at least be able to achieve:

|
∑
R

e2πiξΘx1R+ | ≈ (
∑
R

|e2πiξΘx1R+ |2)
1
2 = (

∑
R

1R+)
1
2 . (5)

Assume R+’s severely overlap to the extent:

|
⋃
R

R+| ≤
1

W

∑
R

|R+| ∼
1

W
|
⋃
R

R|. (6)

Here W is a large number depending on δ. Then we can estimate the quantity in (4) using
Hölder’s inequality:∫

⋃
R R+

|
∑
R

e2πiξΘx1R+ |p ≳
∫
⋃

R R+

(
∑
R

1R+)
p
2

≥ (

∫
⋃

R R+

1)1−
p
2 (

∫
⋃

R R+

∑
R

1R+)
p
2

≳ W
p
2
−1|

⋃
R

R|.

Here we used 1− p
2
< 0. Making W arbitrarily large as δ → 0 will fulfill (3) and (4).
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5 The Rigorous Construction
Now we make everything rigorous. It suffices to use rectangles with non-negative slopes.
Fix C = 1010. Given such a rectangle R of dimension Cδ−1 × δ−2. Its direction is defined
to be the unique vector v ∈ S1 ∩H+ parallel to the long side. And R+ := R+ 10δ−2v.

It’s simpler to use building blocks which have compact supports in the physical space.
Proposition 3 (Wave Packets). Let R,R+ as above. There exists a smooth function fR
supported in R such that |fR(x)| ≤ 1 on R and |1B(D)fR| ∼ 1 on 1

3
R+.

Proof Sketch. By translation and rotation, we can assume R is centered at 0 and v = (1, 0).
Take a smooth function h such that 1

3
(−1

2
, 1
2
)2 ≺ h ≺ (−1

2
, 1
2
)2. Let

fR(x1, x2) := e2πix1h(δ2x1,
δx2

C
).

There are two steps to prove |1B(D)fR| ∼ 1 on 1
3
R+. First, approximate:

1|ξ|<1(D)fR ≈ 1ξ1<1(D)fR. (7)
We use the large constant C = 1010 to ensure the difference is really an error. Second,
calculate 1ξ1<1(D)fR explicitly using the Hilbert transform.

To achieve (5), we put ± signs in front of fR.
Proposition 4 (Square-Root Behavior). Let p > 2. Given any family of functions fR
and any A ⊂ R2, one can choose XR ∈ {−1,+1} such that∫

A

|
∑
R

XRfR|p ≳
∫
A

(
∑
R

|fR|2)
p
2 .

Proof Sketch. Let XR be i.i.d. random variables uniformly distributed on {−1,+1}. It’s
not hard to see

E(

∫
A

|
∑
R

XRfR|p) ≥
∫
A

(
∑
R

|fR|2)
p
2 .

And we have seen the rigorous version of (6).
Proposition 5 (Kakeya Type Configuration [3]). Let N ∈ N be a large number of suitable
form. Then we can find N disjoint rectangles {R} of dimension 1

N
× 1 such that

|
⋃
R

R+| ≲
log logN

logN
|
⋃
R

R|.

Pick a large N . Let δ := (CN)−1 and rescale the rectangles in Proposition 5 into
Cδ−1×δ−2 ones. Then apply Proposition 3 to get fR for each (rescaled) R. By Proposition
4, we finally obtain

∥1B(D)(
∑
R

XRfR)∥p ≳ (logN)cp∥
∑
R

XRfR∥p

for some choice of XR ∈ {−1,+1}. This is the desired counterexample.
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6 Remarks
• Let 2 ≤ p ≤ 4. One can prove that the square root behavior (5), in the Lp sense, is

essentially the best we can achieve [1].

• Proposition 4 holds for general 0 < p < ∞. To show the general case, one needs to
apply Khintchine’s inequality. See the reference in [3].

• Fefferman’s original argument [2] is slightly different. He used Meyer’s lemma, which
essentially combines (7) and Proposition 4 together.

• In higher dimensions, the ball multiplier is unbounded for p ̸= 2 either. In fact, one
can prove

∥1B(D)f∥p ≲ ∥f∥p, ∀f ∈ S(Rd) =⇒ ∥1B(D)g∥p ≲ ∥g∥p, ∀g ∈ S(Rd−1).

See the reference in [2].
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